1. 首页
  2. 联系我们
  3. OA系统
  4. EN

首页 >师资力量 >在职教师

毕建武


管理学博士、副教授、博士生导师

南开大学百名青年学科带头人培养计划入选者

【师生开放交流时间】

星期三 9:00-12:00

【办公地点】

418 办公室

【联系方式】

jianwubi@126.com

jwbi@nankai.edu.cn

【研究领域】

旅游数据分析与挖掘、人工智能+旅游、旅游预测

【招生信息】

旅游管理全日制博士、旅游管理全日制硕士、旅游管理非全日制硕士

【教育背景】

20159—20197月东北大学工商管理学院,管理学博士

20179—20189月新加坡南洋理工大学,联合培养博士研究生

【工作经历】

202212——至今 南开大学旅游与服务学院,副教授、博士生导师

202209——至今 南开大学旅游与服务学院,副教授、硕士生导师

202201——至今 南开大学旅游与服务学院,副教授

201908——202212月 南开大学旅游与服务学院,博士后

【主持科研项目】

1. 国家自然科学基金面上项目,72471126,多源多模态数据情境下基于联邦学习的旅游需求预测方法研究,2025-2028,项目负责人;

2. 国家自然科学基金青年项目,72101124,概念漂移下基于多源异构数据的旅游需求迁移集成预测方法研究,2022-2024,项目负责人;

3. 国家社科基金优秀博士论文出版项目,21FYB066,基于在线评论情感分析的服务属性分类及服务要素配置方法研究,2021-2022,已结项,项目负责人;

4. 教育部社科重大课题,23JZD014,数字文旅的理论逻辑与现实路径研究,2024-2026,子课题负责人;

5. 教育部人文社科青年项目,20YJC630002,基于在线评论/评价的大众消费产品竞争态势分析及改进方法研究,2020-2023,已结项,项目负责人;

6. 博士后特别资助项目,2020T130318,在线评论驱动下基于竞争情形的产品改进方法研究,2020-2022,已结项,项目负责人;

7. 博士后面上项目2019M661000,基于在线评论/评价的酒店服务改进方法研究,2020-2022,已结项,项目负责人

8. 南开大学文科发展基金科学研究类项目,ZX20210067,竞争视角下基于在线评论挖掘的旅游产品改进方法研究,2021-2023,已结项,项目负责人

9. 中央高校基本科研业务经费,63202074,基于在线评论的旅游产品竞争者识别及设计方法研究,2020-2021,已结项,项目负责人;

【参加科研项目】

1. 国家自然科学基金面上项目,数智赋能的旅游记忆营销:理论、机理及策略;

2. 国家自然科学基金面上项目,基于联邦机器学习和相似案例特征挖掘的智能决策方法及应用研究;

3. 国家自然科学基金面上项目,恣纵背后:基于元需求的旅游消费行为及供给侧改革对策构建路径研究;

4. 国家自然科学基金面上项目面向多视角决策支持的基于在线评论的群体偏好分析方法研究

【出版专著】

毕建武《服务属性分类与服务要素配置——基于在线评论情感分析的方法》2022中国社会科学出版社.

【学术论文】

在《Tourism Management》、《Annals of Tourism Research》、《Journal of Travel Research》等国内外重要学术期刊上发表论文40余篇,其中,ABS 4论文10篇。发表的论文在Google学术中引用2200余次,入选ESI热点论文2篇、ESI高被引论文4篇。近几年发表的部分论文如下:

       ·2024

1. Bi, J. W., Zhu, X. E., & Han, T. Y. (2024). Text Analysis in Tourism and Hospitality: A Comprehensive Review. Journal of Travel Research, 0472875241247318. (ABS 4)

2. Han, T. Y., Bi, J. W.*, Wei, Z. H., & Yao, Y. (2024). Visual cues and consumer's booking intention in P2P accommodation: Exploring the role of social and emotional signals from hosts' profile photos. Tourism Management, 102, 104884. (ABS 4)

3. Chen, D., Zhang, W., Bi, J. W.*, Qiu, H., & Lyu, J. (2024). Hosts’ online affinities and their impacts on the number of online reviews on peer-to-peer platforms. Tourism Management, 100, 104817. (ABS 4)

4. Bi, J. W., Wang, Y., Han, T. Y., & Zhang, K. (2024). Exploring the effect of “home feeling” on the online rating of homestays: A three-dimensional perspective. International Journal of Contemporary Hospitality Management, 36(1), 182-217. (ABS 3)

5. Bi, J. W., Han, T. Y., & Yao, Y. (2024). Collaborative forecasting of tourism demand for multiple tourist attractions with spatial dependence: A combined deep learning model. Tourism Economics, 30(2), 361-388.

6. Han, T. Y., & Bi, J. W.* Yao, Y. (2024). Employee Recommendation and Financial Performance: Evidence from Tourism and Hospitality Industry. Cornell Hospitality Quarterly, 19389655241268087.

7. Han, T. Y., Bi, J. W.*, & Yao, Y. (2024). Exploring the antecedents of airline employee job satisfaction and dissatisfaction through employee-generated data. Journal of Air Transport Management, 115, 102545.


  ·2023

1. Yao, Y., Han, T. Y., & Bi, J. W.* (2023). The role of employee loyalty in online reputation: evidence from tourism and hospitality sector. International Journal of Contemporary Hospitality Management, online. (ABS 4)

2. Bi, J. W., Han, T. Y., & Yao, Y. (2023). Fine-grained tourism demand forecasting: A decomposition ensemble deep learning model. Tourism Economics, 29(7), 1736-1763.

3. Bi, J. W., Han, T. Y., Yao, Y., & Yang, T. (2023). Tourism demand forecasting under conceptual drift during COVID-19: an ensemble deep learning model. Current Issues in Tourism, 1-20.

4. Han, T. Y., & Bi, J. W.* (2023). Exploring the asymmetric relationships between satisfaction factors and overall employee satisfaction in the airline industry. Current Issues in Tourism, 1-20.

5. Li, C., Ji, M., McCabe, S., & Bi, J. W.* (2023). Fantasy curiosity: a new theoretical perspective to understand anime pilgrimage. Current Issues in Tourism, 1-19.

·2022

1. Bi, J. W., Li C., Xu H. & Li, H. (2022). Forecasting daily tourism demand with big data: An ensemble deep learning method. Journal of Travel Research, 61(8), 1719-1737. (ABS 4)

2. Chen, D., & Bi, J.W. * (2022). Cue congruence effects of attribute performance and hosts’ service quality attributes on room sales on peer-to-peer accommodation platforms. International Journal of Contemporary Hospitality Management, 34(10), 3634-3654. (ABS 3)

3. Bi, J.W., Han, T. Y., Yao, Y., & Li, H. (2022). Ranking hotels through multi-dimensional hotel information: a method considering travelers’ preferences and expectations. Information Technology & Tourism, 24(1), 127-155.

4. He, L. Y., Li, H.*, Bi, J.W., Yang, J. J., & Zhou, Q. (2022). The impact of public health emergencies on hotel demand-Estimation from a new foresight perspective on the COVID-19. Annals of Tourism Research, 94, 103402. (ABS 4)

5. Chang, J. L., Li, H.*, & Bi, J.W. (2022). Personalized travel recommendation: a hybrid method with collaborative filtering and social network analysis. Current Issues in Tourism, 25(14), 2338-2356.

·2021

1. Bi, J. W., Li, H., & Fan, Z. P. (2021). Tourism demand forecasting with time series imaging: A deep learning model. Annals of Tourism Research, 90, 103255. (ABS 4)

2. Gao, G. X., & Bi, J. W. * (2021). Hotel booking through online travel agency: Optimal Stackelberg strategies under customer-centric payment service. Annals of Tourism Research, 86, 103074. (ABS 4)

3. Cheng, H., Liu, Q., & Bi, J. W. * (2021). Perceived crowding and festival experience: The moderating effect of visitor-to-visitor interaction. Tourism Management Perspectives, 40, 100888.

·2020

1. Bi, J. W., Liu, Y., & Li, H. (2020). Daily tourism volume forecasting for tourist attractions. Annals of Tourism Research, 83, 102923. (ABS 4, ESI高被引论文)

2. Bi, J. W., Liu, Y., Fan, Z. P., & Zhang, J. (2020). Exploring asymmetric effects of attribute performance on customer satisfaction in the hotel industry. Tourism management, 77, 104006. (ABS 4, ESI高被引论文)

3. Bi, J. W., Han, T. Y., & Li, H. (2020). International tourism demand forecasting with machine learning models: The power of the number of lagged inputs. Tourism Economics, 28(3), 621-645.

4. Bi, J. W., Liu, Y., & Fan, Z. P. (2020). Crowd intelligence: Conducting asymmetric impact-performance analysis based on online reviews. IEEE Intelligent Systems, 35(2), 92-98.

5. Bi, J. W., Liu, Y., & Fan, Z. P. (2020). A deep neural networks based recommendation algorithm using user and item basic data. International Journal of Machine Learning and Cybernetics, 11(4), 763-777.

·2019

1. Bi, J. W., Liu, Y., Fan, Z. P., & Zhang, J. (2019). Wisdom of crowds: Conducting importance-performance analysis (IPA) through online reviews. Tourism Management, 70, 460-478. (ABS 4, ESI高被引/热点论文)

2. Bi, J. W., Liu, Y., Fan, Z. P., & Cambria, E. (2019). Modelling customer satisfaction from online reviews using ensemble neural network and effect-based Kano model. International Journal of Production Research, 57(22), 7068-7088. (ABS 3)

3. Bi, J. W., Liu, Y., & Fan, Z. P. (2019). Representing sentiment analysis results of online reviews using interval type-2 fuzzy numbers and its application to product ranking. Information Sciences, 504, 293-307.

【获奖情况】

202212月 南开大学优秀博士后

20228月 全国旅游管理博士后学术论坛优秀成果奖

201810月 博士研究生国家奖学金

201710月 博士研究生国家奖学金

20151月 辽宁省优秀毕业生

201310月 硕士研究生国家奖学金

【社会兼职】

1. 教育部研究生学位论文评审专家

2. 学术桥人才评审项目组评审专家

3. 中国优选法统筹法与经济数学研究会智能决策与博弈分会理事

4. 中国管理现代化研究会管理与决策科学专业委员会理事

5. TM, ATR, IJHM, IJCHM20余种SSCI/SCI期刊的论文评审专家



(更新于2024826日)




 

南开大学
旅游与服务学院